防雷技术 返回>>

智能建筑系统中的接地技术

2015-12-24

智能建筑系统中的接地技术

随着电子技术的发展,智能建筑越来越多,智能建筑中的功能也越来越完善。在实际工作中,设计人员和建设方一般都比较重视智能建筑功能的完善、性能指标的高低和设备的先进性等指标。当然这些都对智能建筑是否成功起着关键作用。但在智能建筑设计和工程施工中还应注意智能建筑中各种设备的接地。接地对于智能建筑中设备的安全运行和数据的可靠传输有着很大影响。如果接地不好,轻则会造成设备不能有效传输数据,降低智能建筑设备的可靠性;重则会损坏设备的部件,甚至造成设备瘫痪并影响人员的安全。


有关智能建筑的接地,在GB/F50314-2000《智能建筑设计标准》中有下面三条规定:

1)应采用总等电位联结,各楼层的智能化系统设备机房、楼层弱电间、楼层配电间等的地应采用局部等电位联结。接地极当采用联合接地体时,接地电阻不应大于1Ω;当采用单独接地体时,接地电阻不应大于4Ω;
2)智能化系统设备的供电系统应采取过压保护等保护措施;
3)在智能化系统设备和电气设备的选择及线路敷设时应考虑电磁兼容问题。

1智能建筑中的接地概念

接地,在电气技术中是指用导体与大地相连。在电子技术中的接地,可能就与大地毫不相关,它只是电路中的一等电位面。如收音机、电视机中的地,它只是线路里的一电位基准,点。而在智能筑建筑中的接地不但包含上述两种接地,还有其它的接地。由于智论能建筑中安装有多个子系统如通信自动化系统,火灾报警及消防联动控制系统,楼宇自动化系统,保安监控系统,办公自动化系统,闭路电视系统等,各个子系统对接地的理解和要求都不太相同。按接地的作用可分为功能性接地和保护性接地。为保证电气设备正常运行或电气系统低噪声接地,称为功能性接地,功能性接地又有工作接地、逻辑接地、信号接地和屏蔽接地等。为了防止人、畜或设备因电击而造成伤亡或损坏的接地称为保护性接地,保护性接地有保护接地、防雷接地和防静电接地。在智能建筑中,这几种接地类型都会遇到。

1.1工作接地

电力系统由于运行和安全的需要,常将中性点(N线)接地,这种接地方式称为工作接地。工作接地有下列目的:
1.1.1降低触电电压
在中性点不接地的系统中,当一相接地而人体触此及另外两相之一时,触电电压为相电压的1.732倍。而在中性点接地的系统中,触电电压就降低到等于或接近相电压。
1.1.2迅速切断故障设备
在中性点不接地的系统中,当一相接地时,接地电流很小(因为导线和地面间存在电容和绝缘电阻,也可构成电流的通路)不足以使保护装置动作而切断电源,接地故障不易被发现,将长时间持续下去,对人身不安全。而中性点接地的系统中,一相接地后的接地电流较大(接近单相短路)保护装置迅速动作,断开故障点。
1.1.3降低电气设备对地的绝缘水平
在中性点不接地的系统中,一相接地时将使另外两相的对地电压升高到线电压。而在中性点接地的系统中,则接近于相电压,故可降低电气设备和输电线的绝缘水平,节省技资。

1.2逻辑接地
将电子设备的金属板作为逻辑信号的参考点而进行的接地,称为逻辑接地。它的作用是保证电路有一个统一的基准电位,不致于浮动而引起信号误差。而在智能建筑中各种设备相隔较远,如果逻辑地不处于同一电位,会引起整个系统工作异常。

1.3信号接地
各种电子电路,都有一个基准电位点,这个基准电位点就是信号地。它的作用是保证电路有一个统一的基准电位,不至于浮动而引起信号误差。信号地的连接是:同一设备的信号输入端地与信号输出端地不能联在一起,而应分开;前级(设备)的输出地只有后级(设备)的输入地相连。否则,信号可能通过地线形成在反馈,引起信号的浮动。这在设备的测试中,信号地的连接尤其要引起注意。

1.4保护接地
保护接地就是将设备正常运行时不带电的金属外壳(或构架)和接地装置之间作良好的电气连接。如果不作保护接地,当电气设备其中-相的绝缘破损,产生漏电而使金属外壳带上相电压时,人一接触就会发生触电事故。实行保护接地后,设备的金属外壳和大地已有良好的连接。如果发生漏电,只要接地电阻符合规定的要求,接地就能成为保障人身安全、防止电事故发生的有效措施。

1.5防雷接地
为把雷电流迅速导人大地,以防止雷害为目的的接地叫作防雷接地。
智能建筑内有大量的电子设备与布线系统,如通信自动化系统,火灾报警及消防联动控制系统,楼宇自动化系统,保安监控系统,办公自动化系统,闭路电视系统等,以及他们相应的布线系统。大楼的各层顶板、底板,侧墙,吊顶内几乎被各种布线布满。这些电子设备及布线系统一般均属于耐压等级低,防干扰要求高,最怕受到雷击的部分。不管是直击、串击、反击都会使电子设备受到不同程度的损坏或严重干扰。因此对智能建筑的防雷接地设计必须严密、可靠。智能建筑的所有功能接地,必须以防雷接地系统为基础,并建立严密,完整的防雷结构。

智能建筑多属于一级负荷,应按一级防雷建筑物的保护措施设计,接闪器采用针带组合接闪器,避雷带采用25×4(mm)镀铮扁钢在屋顶组成≤10(m)的网格,该网格与屋面金属构件作电气连接,与大楼柱头钢筋作电气连接,引下线利用中钢筋,圈梁钢筋,楼层钢筋与防雷系统连接,外墙面所有金属构件也应一防雷系统连接,柱头钢筋与接地体连接,组成具有多层屏蔽的笼形防雷体系。这样不仅可以有效防止雷击损坏楼内设备,而且还能防止外来的电磁干扰。

各种防雷接地装置的工频接地电阻,一般应根据落雷时的反击条件来确定。防雷装置如与电气设备的工作接地合用一个总的接地网时,接地电阻应符合其最小值要求。这是为防雷电而设置的接地保护装置。防雷装置最广泛使用的是避雷针和避雷器。避雷针通过铁塔或建筑物钢筋入地,避雷器则通过专用地线入地。

1.6 屏蔽接地
将电缆屏蔽或金属外皮接地达到电磁适应性要求的接地称为屏蔽接地。在智能建筑内,电磁兼容设计是非常重要的,为了避免所用设备的机能障碍,避免会出现的设备损坏,构成布线系统的设备应当能够防止内部自身传导和外来干扰。这些干扰的产生或者是因为导线之间的耦合现象,或者是因为电容电感电效应。其主要来源是超高电压,大功率辐射电磁场,自然雷击和静电放电。这些现象会对用来发送或接收很高传输频率的设备产生很大的干扰。因此对这些设备及其布线必须采取保护措施,免受来自各种方面的干扰。

1.7防静电接地
将带静电物体或有可能产生静电的物体(非绝缘体),通过导静电体与大地构成电气回路的接地叫防静电接地。在洁净、干燥的房间内,人的走步、移动设备,各自磨擦均会产生大量静电。例如在相对湿度10%~20%的环境中人的走步可以积聚3.5万V的静电电压。如果没有良好的接地,不仅仅会产生对电子设备的干扰,甚至会将设备芯片击坏。

2 智能建筑中的电源接地方式
在电力系统中有5种接地方式,哪种方式最适合系统呢?下面逐一分析每种系统的优缺点。

2.1 IT系统
IT系统是三相三线式接地系统,该系统变压器中性点不接地或经阻抗接地,无中性线N,只有线电压(380V),无相电压(220V),保护接地线PE各自独立接地。该系统的优点是当一相接地时,不会使外壳带有较大的故障电源,系统可以照常运行,同时由于各设备PE线分开,彼此没有干扰,电磁适应性也比较强。缺点是不能配出中性线N。因此它是不适用于拥有大量单相设备的智能建筑。

2.2 TN-C系统
TN-C系统被称为三相四线系统,该系统中性线N与保护接地PE合二为一,通称PEN线。这种接地系统虽对接地故障灵敏度高,线路经济简单,在一般情况下,如选用适当的开关保护装置和足够的导线截面,也能达到安全要求,目前国内采用这种系统比较多。但它只适合用于三相负荷较平衡的场所。智能建筑内,单相负荷所占比重较大,难以实现三相负荷平衡,PEN线的不平衡电流加上线路中存在着的由于荧光灯、晶闸管(可控硅)等设备引起的高次谐波电流,在非故障情况下,会在中性线N上叠加,使中性线N带电,且电流时大时小极不稳定,造成中性点接地电位不稳定漂移。不但会使设备外壳(与PEN线连接)带电,对人身造成不安全,而且也无法取到一个合适的电位基准点,精密电子设备无法准确可靠运行。因此TN-C接地系统不能作为智能建筑的接地系统。

2.3 TT系统
通常称TT系统为三相四线接地系统。该系统常用于建筑物供电来自公共电网的地方。TT系统的特点是中性线N与保护接地线PE无一点电气连接,即中性点接地与PE线接地是分开的。该系统在正常运行时,不管三相负荷平衡不平衡,在中性线N带电情况下,PE线不会带电。只有单相接地故障时,由于保护接地灵敏度低,故障不能及时切断,设备外壳才可能带电,但是故障电流取决于电力系统的接地电阻的PE线的接地电阻,其值往往很小,不足以使数千瓦的用电设备的保护装置断开电源,为了保护人身安全,必须采用残余电流开关作为线路及用电设备的保护装置,否则只适用于供给小负荷的系统。正常运行时的Tr系统类似于TN-S系统,也能获得人与物的安全性和取得合格的基准接地电位。随着大容量的漏电保护器的出现,该系统也会成为智能建筑的接地系统。从目前的情况来看,由于公共电网的电源质量不高,难以满足智能建筑中各种设备的要求,所以智能建筑不宜选用TT系统。

2.4 TN-S系统
TN-S系统有五根线,即三根相线A、B、C、一根中性线N及一根保护线PE,仅电力系统一点接地,用电设备的外露可导电部分按到PE线上。通常建筑物内设有独立变配电所时进线采用该系统。TN-S系统的特点是,中性线N与保护接地线PE除在变压器中性点共同接地外,两线不再有任何的电气连接。中性线N是带电的,而PE线不带电。该接地系统完全具备安全和可靠的基准电位。其优点是PE线上在正常工作日才不呈现电流,因此设备的外露可导电部分也不呈现对地电压。在事故时也容易切断电源,因此比较安全,但费用较贵,多用于环境条件比较差的场所。此外,由于PE线上不呈现电流,有较强的电磁适应性。TN-S系统可以用作智能建筑的接地系统。
2.5 TN-C-S系统
TN-C-S系统由两个接地系统组成,前面四线后五线,第一部分是,刚-C系统,第二部分是TN-S系统,分界面在N线与PE线的连接点,分开后即不允许再合并。该系统一般用在建筑物的供电由区域变电所引来的场所,进户之前采用TN-C系统,进户处做重复接地,进户后变成TN-S系统。TN-C系统前面已做分析。TN-S系统的特点是:中性线N与保护接地线PE在进户时共同接地后,不能再有任何电气连接。该系统中,中性线N常会带电,保护接地线PC没有电的来源。PE线连接的设备外壳及金属构件在系统正常运行时,始终不会带电。因此TN-S接地系统明显提高了人及物的安全性。同时只要采取接地引线,各自都从接地体一点引出,及选择正确的接地电阻值使电子设备共同获得一个接地电位基准点等措施,那么TN-C-S系统可以作为智能建筑的一种接地系统。

综上所述,智能建筑中适合使用TN-S供电系统。

3能建统中各种设告的接地方法
智能建筑中安装有大量的电子设备,这些设备分属于不同的专系统,由于这些设备工作频率、抗干扰能力和功能等都不相同,对接地的要求也不同。在实际施工安装中,按下述方法进行接地。
1)电子设备的信号接地、逻辑接地、功率接地、屏蔽接地和保护接地,一般合用一个接地极,其接地电阻不大于4Ω;当电子设备的接地与工频交流接地、防雷接地合用一个接地极时,其接地电阻不大于1Ω。屏蔽接地如单独设置,则接地电阻一般为300Ω;
2)对抗干扰能力差的设备,其接地应与防雷接地分开,两者相互距离宜在20m以内,对抗干扰能力较强的电子设备,两者的距离可酌情减少,但不宜低于5m;
3)当电子设备接地和防雷接地采用共同接地装置时,两者避免雷击时遭受反击和保证设备安全,应采用埋地铠装电缆供电;
4)电缆屏蔽层必须接地,为避免产生干扰电流,对信号电缆和1MHZ及以下低频电缆应一点接地;对1MHZ以上电缆,为保证屏蔽层为地电位,应采用多点接地。闭路电视和工业电视都必须采用一点接地。

智能建筑是近几年新出现的,智能建筑中的各种电子设备也在不断的发展,接地技术也会不断的发展和变化。随着智能建筑的发展,智能建筑中的接地技术会更加的完善,以使智能建筑中的设备稳定可靠地工作。
版权所有:陕西伟信防雷科技有限公司
技术支持:伟信防雷 陕ICP备15014970号-1